Lesson No. 18

Screen Location Calculation

Until now our algorithms used a fixed attribute and displayed at a fixed screen location. We will change that to use any position on the screen and any attribute. For mapping from the two dimensional coordinate system of the screen to the one dimensional memory, we need to multiply the row number by 80 since there are 80 columns per row and add the column number to it and again multiply by two since there are 2 bytes for each character.

For this purpose the multiplication routine written previously can be used. However we introduce an instruction of the 8088 microprocessor at this time that can multiply 8bit or 16bit numbers.

MUL Instruction

MUL (multiply) performs an unsigned multiplication of the source operand and the accumulator. If the source operand is a byte, then it is multiplied by register AL and the double-length result is returned in AH and AL. If the source operand is a word, then it is multiplied by register AX, and the double-length result is returned in registers DX and AX.

String Printing at Desired Location

We modify the string printing program to take the x-position, the y-position, and the attribute as parameters. The desired location on the screen can be calculated with the following formulae.

location = (ypos * 80 + xpos) * 2

	
	Example 6.4

	01

02

03

04

05

06

07

08-25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
	; hello world at desired screen location

[org 0x0100]

 jmp start

message: db 'hello world' ; string to be printed

length: dw 11 ; length of the string

;;;;; COPY LINES 008-025 FROM EXAMPLE 6.2 (clrscr) ;;;;;

; subroutine to print a string at top left of screen

; takes x position, y position, string attribute, address of string

; and its length as parameters

printstr: push bp

 mov bp, sp

 push es

 push ax

 push cx

 push si

 push di

 mov ax, 0xb800

 mov es, ax ; point es to video base

 mov al, 80 ; load al with columns per row

 mul byte [bp+10] ; multiply with y position

 add ax, [bp+12] ; add x position

 shl ax, 1 ; turn into byte offset

 mov di,ax ; point di to required location

 mov si, [bp+6] ; point si to string

 mov cx, [bp+4] ; load length of string in cx

 mov ah, [bp+8] ; load attribute in ah

nextchar: mov al, [si] ; load next char of string

 mov [es:di], ax ; show this char on screen

 add di, 2 ; move to next screen location

 add si, 1 ; move to next char in string

 loop nextchar ; repeat the operation cx times

 pop di

 pop si

 pop cx

 pop ax

 pop es

 pop bp

 ret 10

start: call clrscr ; call the clrscr subroutine

 mov ax, 30

 push ax ; push x position

 mov ax, 20

 push ax ; push y position

 mov ax, 1 ; blue on black attribute

 push ax ; push attribute

 mov ax, message

 push ax ; push address of message

 push word [length] ; push message length

 call printstr ; call the printstr subroutine

 mov ax, 0x4c00 ; terminate program

 int 0x21

	41
	Push and pop operations always operate on words; however data can be read as a word or as a byte. For example we read the lower byte of the parameter y-position in this case.

	43
	Shifting is used for multiplication by two, which should always be the case when multiplication or divison by a power of two is desired.

	61
	The subroutine had 5 parameters so “ret 10” is used.

	65-74
	The main program pushes 30 as x-position, 20 as y-position meaning 30th column on 20th row. It pushes 1 as the attribute meaning low intensity blue on black with no blinking.

When the program is executed hello world is displayed at the desired screen location in the desired color. The x-position, y-position, and attribute parameters can be changed and their effect be seen on the screen. The important difference in this example is the use of MUL instruction and the calculation of screen location given the x and y positions.

Exercises

1. Replace the following valid instruction with a single instruction that has the same effect. Don’t consider the effect on flags.

dec cx
jnz L3

2. Write an infinite loop that shows two asterisks moving from right and left centers of the screen to the middle and then back. Use two empty nested loops with large counters to introduce some delay so that the movement is noticeable.

3. Write a function “printaddr” that takes two parameters, the segment and offset parts of an address, via the stack. The function should print the physical address corresponding to the segment offset pair passed at the top left of the screen. The address should be printed in hex and will therefore occupy exactly five columns. For example, passing 5600 and 7800 as parameters should result in 5D800 printed at the top left of the screen.

4. Write code that treats an array of 500 bytes as one of 4000 bits and for each blank position on the screen (i.e. space) sets the corresponding bit to zero and the rest to one.
5. Write a function “drawrect” that takes four parameters via the stack. The parameters are top, left, bottom, and right in this order. The function should display a rectangle on the screen using the characters + - and |.
1
String Instructions

1.1. String Processing

Till now very simple instructions of the 8088 microprocessor have been introduced. In this chapter we will discuss a bit more powerful instructions that can process blocks of data in one go. They are called block processing or string instructions. This is the appropriate place to discuss these instructions as we have just introduced a block of memory, which is the video memory. The vision of this memory for the processor is just a block of memory starting at a special address. For example the clear screen operation initializes this whole block to 0741.

There are just 5 block processing instructions in 8088. In the primitive form, the instructions themselves operate on a single cell of memory at one time. However a special prefix repeats the instruction in hardware called the REP prefix. The REP prefix allows these instructions to operate on a number of data elements in one instruction. This is not like a loop; rather this repetition is hard coded in the processor. The five instructions are STOS, LODS, CMPS, SCAS, and MOVS called store string, load string, compare string, scan string, and move string respectively. MOVS is the instruction that allows memory to memory moves, as was discussed in the exceptions to the memory to memory movement rules. String instructions are complex instruction in that they perform a number of tasks against one instruction. And with the REP prefix they perform the task of a complex loop in one instruction. This causes drastic speed improvements in operations on large blocks of memory. The reduction in code size and the improvement in speed are the two reasons why these instructions were introduced in the 8088 processor.

There are a number of common things in these instructions. Firstly they all work on a block of data. DI and SI are used to access memory. SI and DI are called source index and destination index because of string instructions. Whenever an instruction needs a memory source, DS:SI holds the pointer to it. An override is possible that can change the association from DS but the default is DS. Whenever a string instruction needs a memory destination, ES:DI holds the pointer to it. No override is possible in this case. Whenever a byte register is needed, AL holds the value. Whenever a word register is used AX holds the value. For example STOS stores a register in memory so AL or AX is the register used and ES:DI points to the destination. The LODS instruction loads from memory to register so the source is pointed to by DS:SI and the register used is AL or AX.

String instructions work on a block of data. A block has a start and an end. The instructions can work from the start towards the end and from the end towards the start. In fact they can work in both directions, and they must be allowed to work in both directions otherwise certain operations with overlapping blocks become impossible. This problem is discussed in detail later. The direction of movement is controlled with the Direction Flag (DF) in the flags register. If this flag is cleared the direction is from lower addresses towards higher addresses and if this flag is set the direction is from higher addresses to lower addresses. If DF is cleared, this is called the auto-increment mode of string instruction, and if DF is set, this is called the auto-decrement mode. There are two instructions to set and clear the direction flag.

cld
; clear direction flag
std
; set direction flag

Every string instruction has two variants; a byte variant and a word variant. For example the two variants of STOS are STOSB and STOSW. Similarly the variants for the other string instructions are attained by appending a B or a W to the instruction name. The operation of each of the string instructions and each of the repetition prefixes is discussed below.

STOS

STOS transfers a byte or word from register AL or AX to the string element addressed by ES:DI and updates DI to point to the next location. STOS is often used to clear a block of memory or fill it with a constant.

The implied source will always be in AL or AX. If DF is clear, SI will be incremented by one or two depending of whether STOSB or STOSW is used. If DF is set SI will be decremented by one or two depending of whether STOSB or STOSW is used. If REP is used before this instruction, the process will be repeated CX times. CX is called the counter register because of the special treatment given to it in the LOOP and JCXZ instructions and the REP set of prefixes. So if REP is used with STOS the whole block of memory will be filled with a constant value. REP will always decrement CX like the LOOP instruction and this cannot be changed with the direction flag. It is also independent of whether the byte or the word variant is used. It always decrements by one; therefore CX has count of repetitions and not the count of bytes.

LODS

LODS transfers a byte or word from the source location DS:SI to AL or AX and updates SI to point to the next location. LODS is generally used in a loop and not with the REP prefix since the value previously loaded in the register is overwritten if the instruction is repeated and only the last value of the block remains in the register.

SCAS

SCAS compares a source byte or word in register AL or AX with the destination string element addressed by ES:DI and updates the flags. DI is updated to point to the next location. SCAS is often used to locate equality or in-equality in a string through the use of an appropriate prefix.

SCAS is a bit different from the other instructions. This is more like the CMP instruction in that it does subtraction of its operands. The prefixes REPE (repeat while equal) and REPNE (repeat while not equal) are used with this instruction. The instruction is used to locate a byte in AL in the block of memory. When the first equality or inequality is encountered; both have uses. For example this instruction can be used to search for a 0 in a null terminated string to calculate the length of the string. In this form REPNE will be used to repeat while the null is not there.

MOVS

MOVS transfers a byte or word from the source location DS:SI to the destination ES:DI and updates SI and DI to point to the next locations. MOVS is used to move a block of memory. The DF is important in the case of overlapping blocks. For example when the source and destination blocks overlap and the source is below the destination copy must be done upwards while if the destination is below the source copy must be done downwards. We cannot perform both these copy operations properly if the direction flag was not provided. If the source is below the destination and an upwards copy is used the source to be copied is destroyed. If however the copy is done downwards the portion of source destroyed is the one that has already been copied. Therefore we need the control of the direction flag to handle this problem. This problem is further detailed in a later example.

CMPS

CMPS subtracts the source location DS:SI from the destination location ES:DI. Source and Destination are unaffected. SI and DI are updated accordingly. CMPS compares two blocks of memory for equality or inequality of the block. It subtracts byte by byte or word by word. If used with a REPE or a REPNE prefix is repeats as long as the blocks are same or as long as they are different. For example it can be used for find a substring. A substring is a string that is contained in another string. For example “has” is contained in “Mary has a little lamp.” Using CMPS we can do the operation of a complex loop in a single instruction. Only the REPE and REPNE prefixes are meaningful with this instruction.

